- Data visualization in Python.
- Latest techniques in visualization in Python
- Latest library used in visualization in Python.
- Step by step and easy to practice and easy to learn
- End to end python code.
Mastering Data Visualization in Python: A Comprehensive Guide
Welcome to your ultimate resource for creating stunning and insightful data visualizations in Python! In this comprehensive guide, we’ll embark on a step-by-step journey, exploring the latest techniques and leveraging the power of cutting-edge Python libraries. Whether you’re a seasoned data scientist or just starting your visualization adventure, this tutorial will equip you with the skills to transform raw data into compelling visual narratives.
We’ll cover a range of visualization types, from fundamental plots to more advanced interactive dashboards, all with easy-to-follow code examples and clear explanations. Let’s dive in!
Setting Up Your Environment – No setup required
Setting Up Your Environment
No setup required as you can just start doing Data Visualization in our inbuild coding environment..
OR
Ensure you have the necessary libraries installed. Open your terminal or command prompt and run the following pip commands:
Bash
pip install matplotlib seaborn plotly pandas streamlit
- Matplotlib: The foundational library for creating static, interactive, and animated visualizations in Python. It provides fine-grained control over plot elements.
- Seaborn: Built on top of Matplotlib, Seaborn offers a high-level interface for drawing attractive and informative statistical graphics. It simplifies the creation of complex visualizations.
- Plotly: A powerful library for creating interactive, web-based visualizations. Plotly graphs can be easily embedded in web applications and dashboards.
- Pandas: While primarily used for data manipulation and analysis, Pandas provides excellent integration with visualization libraries, making it easy to plot data directly from DataFrames.
- Streamlit: A fantastic library for quickly building and sharing interactive data applications and dashboards with minimal coding.
Once these libraries are installed, you’re ready to start visualizing!
Part 1: Fundamental Visualizations with Matplotlib and Seaborn
Part 1: Fundamental Visualizations with Matplotlib and Seaborn
We’ll begin with the bedrock of Python visualization: Matplotlib and its user-friendly extension, Seaborn.
1. Scatter Plots
1. Scatter Plots
Scatter plots are excellent for visualizing the relationship between two numerical variables.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
# Sample Data
data = pd.DataFrame({'X': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'Y': [2, 4, 1, 5, 7, 3, 8, 6, 9, 10],
'Category': ['A', 'B', 'A', 'C', 'B', 'C', 'A', 'B', 'C', 'A']})
# Basic Scatter Plot with Matplotlib
plt.figure(figsize=(8, 6))
plt.scatter(data['X'], data['Y'])
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Basic Scatter Plot (Matplotlib)')
plt.grid(True)
plt.show()
# Enhanced Scatter Plot with Seaborn (coloring by category)
plt.figure(figsize=(8, 6))
sns.scatterplot(x='X', y='Y', hue='Category', data=data, s=100) # 's' controls marker size
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot with Category (Seaborn)')
plt.legend(title='Category')
plt.grid(True)
plt.show()
🐍 Practice Python Here! 🚀
Write, Run & Debug Python Code Directly in Your Browser! 💻✨
Key Takeaways:
- Matplotlib provides a basic
plt.scatter()
function. - Seaborn’s
sns.scatterplot()
simplifies adding aesthetics like color-coding by categories using thehue
parameter and controlling marker size withs
.
2. Line Plots
2. Line Plots
Line plots are ideal for visualizing trends over a continuous variable, often time.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
# Sample Time Series Data
time_data = pd.DataFrame({'Time': pd.to_datetime(['2025-01-01', '2025-01-02', '2025-01-03', '2025-01-04', '2025-01-05']),
'Value': [10, 15, 12, 18, 16]})
# Line Plot with Matplotlib
plt.figure(figsize=(8, 6))
plt.plot(time_data['Time'], time_data['Value'], marker='o', linestyle='-') # Adding markers and line style
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Line Plot (Matplotlib)')
plt.grid(True)
plt.show()
# Enhanced Line Plot with Seaborn
plt.figure(figsize=(8, 6))
sns.lineplot(x='Time', y='Value', data=time_data, marker='o')
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Line Plot (Seaborn)')
plt.grid(True)
plt.show()
🐍 Practice Python Here! 🚀
Write, Run & Debug Python Code Directly in Your Browser! 💻✨
Key Takeaways:
plt.plot()
in Matplotlib is used for line plots. You can customize markers and line styles.sns.lineplot()
in Seaborn offers a cleaner syntax and handles time series data well.
3. Bar Plots
3. Bar Plots
Bar plots are used to compare categorical data.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
# Sample Categorical Data
category_data = pd.DataFrame({'Category': ['A', 'B', 'C', 'D'],
'Count': [25, 40, 30, 35]})
# Bar Plot with Matplotlib
plt.figure(figsize=(8, 6))
plt.bar(category_data['Category'], category_data['Count'])
plt.xlabel('Category')
plt.ylabel('Count')
plt.title('Bar Plot (Matplotlib)')
plt.show()
# Enhanced Bar Plot with Seaborn
plt.figure(figsize=(8, 6))
sns.barplot(x='Category', y='Count', data=category_data, palette='viridis') # Using a color palette
plt.xlabel('Category')
plt.ylabel('Count')
plt.title('Bar Plot (Seaborn)')
plt.show()
🐍 Practice Python Here! 🚀
Write, Run & Debug Python Code Directly in Your Browser! 💻✨
Key Takeaways:
plt.bar()
creates basic bar plots in Matplotlib.sns.barplot()
in Seaborn allows for easy customization of colors using palettes.
4. Histograms
4. Histograms
Histograms visualize the distribution of a single numerical variable.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
# Sample Numerical Data
numerical_data = pd.Series([22, 35, 48, 52, 28, 39, 45, 31, 58, 41, 25, 38])
# Histogram with Matplotlib
plt.figure(figsize=(8, 6))
plt.hist(numerical_data, bins=5, edgecolor='black') # Specifying the number of bins
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram (Matplotlib)')
plt.show()
# Enhanced Histogram with Seaborn
plt.figure(figsize=(8, 6))
sns.histplot(numerical_data, bins=5, kde=True) # Adding a Kernel Density Estimate (KDE)
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram with KDE (Seaborn)')
plt.show()
🐍 Practice Python Here! 🚀
Write, Run & Debug Python Code Directly in Your Browser! 💻✨
Key Takeaways:
plt.hist()
generates histograms in Matplotlib. Thebins
parameter controls the number of intervals.sns.histplot()
in Seaborn can add a smooth density curve (kde=True
) for better understanding of the distribution shape.
5. Box Plots (Box and Whisker Plots)
5. Box Plots (Box and Whisker Plots)
Box plots display the distribution of a dataset based on a five-number summary: minimum, first quartile, median, third quartile, and maximum. They are also useful for detecting outliers.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
# Sample Grouped Data
grouped_data = pd.DataFrame({'Group': ['A', 'A', 'B', 'B', 'C', 'C', 'A', 'B', 'C'],
'Value': [15, 18, 22, 25, 30, 28, 16, 23, 32]})
# Box Plot with Matplotlib
plt.figure(figsize=(8, 6))
plt.boxplot([grouped_data[grouped_data['Group'] == 'A']['Value'],
grouped_data[grouped_data['Group'] == 'B']['Value'],
grouped_data[grouped_data['Group'] == 'C']['Value']],
labels=['A', 'B', 'C'])
plt.xlabel('Group')
plt.ylabel('Value')
plt.title('Box Plot (Matplotlib)')
plt.show()
# Enhanced Box Plot with Seaborn
plt.figure(figsize=(8, 6))
sns.boxplot(x='Group', y='Value', data=grouped_data, palette='Set2')
plt.xlabel('Group')
plt.ylabel('Value')
plt.title('Box Plot (Seaborn)')
plt.show()
🐍 Practice Python Here! 🚀
Write, Run & Debug Python Code Directly in Your Browser! 💻✨
Key Takeaways:
- Matplotlib’s
plt.boxplot()
requires providing data for each group separately. - Seaborn’s
sns.boxplot()
can directly use a DataFrame and specify the grouping variable with thex
parameter.
Part 2: Interactive Visualizations with Plotly
Part 2: Interactive Visualizations with Plotly
Plotly empowers you to create interactive visualizations that can be zoomed, panned, and hovered over, providing a richer data exploration experience.
1. Interactive Scatter Plots
1. Interactive Scatter Plots
Python
import plotly.express as px
# Sample Data (same as before)
data = pd.DataFrame({'X': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'Y': [2, 4, 1, 5, 7, 3, 8, 6, 9, 10],
'Category': ['A', 'B', 'A', 'C', 'B', 'C', 'A', 'B', 'C', 'A']})
# Interactive Scatter Plot with Plotly Express
fig = px.scatter(data, x='X', y='Y', color='Category',
title='Interactive Scatter Plot (Plotly)')
fig.show()
Key Takeaways:
- Plotly Express (
plotly.express
orpx
) provides a high-level interface for creating interactive plots with minimal code. - The
color
parameter automatically color-codes points based on a categorical variable. Hovering over points reveals data.
2. Interactive Line Plots
2. Interactive Line Plots
Python
# Sample Time Series Data (same as before)
time_data = pd.DataFrame({'Time': pd.to_datetime(['2025-01-01', '2025-01-02', '2025-01-03', '2025-01-04', '2025-01-05']),
'Value': [10, 15, 12, 18, 16]})
# Interactive Line Plot with Plotly Express
fig = px.line(time_data, x='Time', y='Value', title='Interactive Line Plot (Plotly)')
fig.show()
Key Takeaways:
px.line()
creates interactive line plots. You can zoom and pan along the time axis.
3. Interactive Bar Charts
3. Interactive Bar Charts
Python
# Sample Categorical Data (same as before)
category_data = pd.DataFrame({'Category': ['A', 'B', 'C', 'D'],
'Count': [25, 40, 30, 35]})
# Interactive Bar Chart with Plotly Express
fig = px.bar(category_data, x='Category', y='Count', title='Interactive Bar Chart (Plotly)')
fig.show()
Key Takeaways:
px.bar()
generates interactive bar charts. Hovering over bars shows the exact count.
4. Interactive Histograms
4. Interactive Histograms
Python
# Sample Numerical Data (same as before)
numerical_data = pd.Series([22, 35, 48, 52, 28, 39, 45, 31, 58, 41, 25, 38])
# Interactive Histogram with Plotly Express
fig = px.histogram(numerical_data, nbins=5, title='Interactive Histogram (Plotly)')
fig.show()
Key Takeaways:
px.histogram()
creates interactive histograms. You can adjust the number of bins interactively.
5. Interactive Box Plots
5. Interactive Box Plots
Python
# Sample Grouped Data (same as before)
grouped_data = pd.DataFrame({'Group': ['A', 'A', 'B', 'B', 'C', 'C', 'A', 'B', 'C'],
'Value': [15, 18, 22, 25, 30, 28, 16, 23, 32]})
# Interactive Box Plot with Plotly Express
fig = px.box(grouped_data, x='Group', y='Value', title='Interactive Box Plot (Plotly)')
fig.show()
Key Takeaways:
px.box()
generates interactive box plots, allowing you to explore the distribution details by hovering.
Part 3: Building Interactive Dashboards with Streamlit
Part 3: Building Interactive Dashboards with Streamlit
Streamlit makes it incredibly easy to deploy your Python visualizations as interactive web applications and dashboards.
Python
# Save this code as a Python file (e.g., app.py)
import streamlit as st
import pandas as pd
import plotly.express as px
# Sample Data
data = pd.DataFrame({'X': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'Y': [2, 4, 1, 5, 7, 3, 8, 6, 9, 10],
'Category': ['A', 'B', 'A', 'C', 'B', 'C', 'A', 'B', 'C', 'A']})
time_data = pd.DataFrame({'Time': pd.to_datetime(['2025-01-01', '2025-01-02', '2025-01-03', '2025-01-04', '2025-01-05']),
'Value': [10, 15, 12, 18, 16]})
category_data = pd.DataFrame({'Category': ['A', 'B', 'C', 'D'],
'Count': [25, 40, 30, 35]})
numerical_data = pd.Series([22, 35, 48, 52, 28, 39, 45, 31, 58, 41, 25, 38])
grouped_data = pd.DataFrame({'Group': ['A', 'A', 'B', 'B', 'C', 'C', 'A', 'B', 'C'],
'Value': [15, 18, 22, 25, 30, 28, 16, 23, 32]})
st.title('Interactive Data Visualization Dashboard')
# Scatter Plot
st.subheader('Interactive Scatter Plot')
fig_scatter = px.scatter(data, x='X', y='Y', color='Category',
title='Scatter Plot')
st.plotly_chart(fig_scatter)
# Line Plot
st.subheader('Interactive Line Plot')
fig_line = px.line(time_data, x='Time', y='Value', title='Line Plot')
st.plotly_chart(fig_line)
# Bar Chart
st.subheader('Interactive Bar Chart')
fig_bar = px.bar(category_data, x='Category', y='Count', title='Bar Chart')
st.plotly_chart(fig_bar)
# Histogram
st.subheader('Interactive Histogram')
fig_hist = px.histogram(numerical_data, nbins=5, title='Histogram')
st.plotly_chart(fig_hist)
# Box Plot
st.subheader('Interactive Box Plot')
fig_box = px.box(grouped_data, x='Group', y='Value', title='Box Plot')
st.plotly_chart(fig_box)
To run this Streamlit application:
- Save the code as
app.py
. - Open your terminal or command prompt.
- Navigate to the directory where you saved
app.py
. - Run the command:
streamlit run app.py
This will automatically open a new tab in your web browser displaying your interactive dashboard with all the visualizations created with Plotly.
Key Takeaways:
- Streamlit allows you to create web applications with minimal Python code.
st.title()
,st.subheader()
are used for adding text elements.st.plotly_chart()
renders Plotly figures directly in the Streamlit app, making them interactive in the browser.
Latest Techniques and Advanced Libraries
Latest Techniques and Advanced Libraries
Beyond the fundamentals, here are some of the latest techniques and libraries pushing the boundaries of data visualization in Python:
- Altair: A declarative statistical visualization library based on Vega-Lite. It focuses on specifying the “what” of the visualization rather than the “how,” leading to concise and expressive code. Altair excels in creating interactive visualizations that can be easily shared as JSON specifications.
- Bokeh: Another powerful library for creating interactive web visualizations. Bokeh emphasizes performance and is well-suited for large datasets and streaming data. It offers a wide range of glyphs, layouts, and interactions.
- NetworkX: For visualizing complex relationships and structures as networks or graphs. Useful in social network analysis, biological networks, and more.
- **Geopandas and Folium
Altair, Bokeh, NetworkX, Geopandas and Folium
Absolutely! Let’s delve into these advanced Python libraries for data visualization.
Advanced Libraries for Specialized Visualizations
1. Declarative Statistical Visualization with Altair
Altair offers a powerful and concise way to create statistical visualizations based on the grammar of graphics. You declare the visual encoding of your data, and Altair handles the underlying plotting mechanics. This declarative approach often results in more readable and maintainable code, especially for complex visualizations.
Python
import altair as alt
import pandas as pd
# Sample Data
data = pd.DataFrame({'X': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'Y': [2, 4, 1, 5, 7, 3, 8, 6, 9, 10],
'Category': ['A', 'B', 'A', 'C', 'B', 'C', 'A', 'B', 'C', 'A'],
'Value': [10, 20, 15, 25, 30, 18, 22, 28, 35, 40]})
# Basic Scatter Plot with Altair
chart = alt.Chart(data).mark_circle().encode(
x='X',
y='Y',
color='Category'
).properties(
title='Scatter Plot (Altair)'
)
chart.show()
# Interactive Scatter Plot with Tooltips
chart_interactive = alt.Chart(data).mark_circle().encode(
x='X',
y='Y',
color='Category',
tooltip=['X', 'Y', 'Category', 'Value'] # Add tooltips on hover
).properties(
title='Interactive Scatter Plot with Tooltips (Altair)'
).interactive() # Make the chart interactive (zoom, pan)
chart_interactive.show()
# Layered Bar Chart
category_summary = data.groupby('Category')['Value'].agg(['mean', 'sum']).reset_index()
bar_chart = alt.Chart(category_summary).mark_bar().encode(
x='Category',
y='mean',
tooltip=['Category', 'mean', 'sum']
).properties(
title='Mean Value by Category (Altair)'
)
bar_chart.show()
Key Takeaways:
- Altair uses a declarative syntax where you define the mapping between data fields and visual channels (x, y, color, size, tooltip, etc.) using the
.encode()
method. - Marks (
mark_circle()
,mark_bar()
, etc.) specify the visual representation of the data points. .properties()
sets chart attributes like title..interactive()
enables zooming and panning.- The
tooltip
parameter within.encode()
allows you to display data on hover. - Altair charts can be easily saved as JSON objects, making them portable and shareable.
2. High-Performance Interactive Visualizations with Bokeh
Bokeh focuses on creating interactive web visualizations with a focus on performance, making it suitable for large datasets and real-time applications. It provides a flexible and extensive API for building complex plots and dashboards.
Python
from bokeh.plotting import figure, show
from bokeh.models import ColumnDataSource, HoverTool
# Sample Data
data = {'X': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'Y': [2, 4, 1, 5, 7, 3, 8, 6, 9, 10],
'Category': ['A', 'B', 'A', 'C', 'B', 'C', 'A', 'B', 'C', 'A'],
'Value': [10, 20, 15, 25, 30, 18, 22, 28, 35, 40]}
source = ColumnDataSource(data)
# Basic Scatter Plot with Bokeh
p = figure(title="Scatter Plot (Bokeh)", x_axis_label='X', y_axis_label='Y')
p.circle(x='X', y='Y', source=source, size=10, legend_field='Category')
show(p)
# Interactive Scatter Plot with Hover Tool
hover = HoverTool(tooltips=[
("Index", "$index"),
("(x,y)", "(@X, @Y)"),
("Category", "@Category"),
("Value", "@Value")
])
p_interactive = figure(title="Interactive Scatter Plot with Hover (Bokeh)",
x_axis_label='X', y_axis_label='Y',
tools=[hover, 'pan,wheel_zoom,box_zoom,reset,save']) # Adding interactive tools
p_interactive.circle(x='X', y='Y', source=source, size=10, color={'field': 'Category'})
show(p_interactive)
# Bar Chart with Bokeh
categories = ['A', 'B', 'C', 'D']
counts = [25, 40, 30, 35]
p_bar = figure(x_range=categories, height=350, title="Bar Chart (Bokeh)",
x_axis_label='Category', y_axis_label='Count')
p_bar.vbar(x=categories, top=counts, width=0.9)
show(p_bar)
Key Takeaways:
- Bokeh uses
figure()
to create plot canvases and glyph methods (e.g.,circle()
,vbar()
) to add visual elements. ColumnDataSource
is a fundamental data structure in Bokeh that optimizes data handling for web rendering.- Bokeh offers a rich set of interactive tools that can be added to plots (e.g.,
HoverTool
,pan
,zoom
). - Legends and color mapping can be easily implemented.
- Bokeh plots can be embedded in web pages and integrated with other web technologies.
3. Network Visualization with NetworkX
NetworkX is a powerful library for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. While not strictly a visualization library, it provides tools for drawing graphs that represent these networks. You often integrate NetworkX with Matplotlib or other visualization libraries for more advanced customization.
python import networkx as nx import matplotlib.pyplot as plt
Create a simple graph
G = nx.Graph() G.add_edges_from([(1, 2), (1, 3), (2, 3), (3, 4), (4, 5)])
Draw the graph with basic layout
plt.figure(figsize=(8, 6))
nx.draw(G, with_labels=True, node_color='lightblue', node_size=1500, font_size=12, font_weight='bold')
plt.title("Simple Network Graph (NetworkX with Matplotlib)")
plt.show()
Customize the layout
pos = nx.spring_layout(G) # Use a spring layout algorithm
plt.figure(figsize=(8, 6))
nx.draw(G, pos, with_labels=True, node_color='lightgreen', node_size=1000, font_size=10, font_color='black', width=2, edge_color='gray')
plt.title("Network Graph with Spring Layout (NetworkX with Matplotlib)") plt.show()
Adding node attributes and visualizing based on them
G.add_node(1, size=20)
G.add_node(2, size=30)
G.add_node(3, size=40)
G.add_node(4, size=30)
G.add_node(5, size=20)
node_sizes = [G.nodes[i]['size'] * 100 for i in G.nodes()]
plt.figure(figsize=(8, 6))
nx.draw(G, pos, with_labels=True, node_size=node_sizes, node_color='orange', alpha=0.7, edge_color='lightgray')
plt.title("Network Graph with Node Size based on Attribute (NetworkX with Matplotlib)")
plt.show()
Key Takeaways:
- NetworkX focuses on the graph structure and provides algorithms for analyzing network properties (e.g., centrality, pathfinding).
- `nx.Graph()` creates an undirected graph; `nx.DiGraph()` creates a directed graph.
- `G.add_edges_from()` adds connections between nodes.
- `nx.draw()` uses Matplotlib to visualize the graph.
- Layout algorithms like `nx.spring_layout()` arrange nodes in a visually informative way.
- Node and edge attributes can be added and used to customize the visualization (e.g., node size, color).
4. Geospatial Data Visualization with Geopandas and Folium
For visualizing geographical data, Geopandas and Folium are indispensable libraries.
Geopandas: Extends Pandas to handle geospatial data. It allows you to read, manipulate, and analyze spatial data (e.g., shapefiles, GeoJSON) as GeoDataFrames. It integrates well with Matplotlib for static map visualizations.
Folium: Builds on the Leaflet JavaScript library to create interactive maps that can be displayed in a web browser. It’s excellent for visualizing location-based data with markers, polygons, and tile layers.
import geopandas as gpd
import matplotlib.pyplot as plt
import folium
# Note: You'll need a GeoJSON or shapefile for this example.
# Let's assume you have a file named 'world_countries.geojson'
try:
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
# Basic static map with Geopandas and Matplotlib
plt.figure(figsize=(10, 8))
world.plot(cmap='viridis', edgecolor='black')
plt.title("World Countries (Geopandas)")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.show()
# Creating an interactive map with Folium
m = folium.Map(location=[0, 0], zoom_start=2) # Centered at [latitude, longitude]
# Adding a marker
folium.Marker(location=[40.7128, -74.0060], popup="New York City").add_to(m)
# Adding GeoJSON data (using the Geopandas GeoDataFrame)
folium.GeoJson(world.__geo_interface__).add_to(m)
# Display the map (this will output an HTML representation)
m.save("world_map.html") # Save the map to an HTML file
print("Folium map saved to world_map.html. Open it in your browser.")
except Exception as e:
print(f"Error loading geospatial data or libraries: {e}")
print("Please ensure you have Geopandas and Folium installed and a valid GeoJSON/shapefile.")
Key Takeaways:
- Geopandas uses GeoDataFrames, which have a special ‘geometry’ column containing geometric objects (points, lines, polygons).
.plot()
method on a GeoDataFrame uses Matplotlib for plotting spatial data.- Folium creates interactive maps that can be zoomed and panned.
folium.Map()
initializes a map centered at a given location and zoom level.folium.Marker()
adds markers to the map.folium.GeoJson()
can display geographic boundaries and features from GeoJSON data (or the__geo_interface__
of a Geopandas GeoDataFrame).- Folium maps are rendered as HTML files that can be opened in any web browser.
Conclusion: The Expanding Landscape of Python Data Visualization
Python offers a rich and evolving ecosystem for data visualization. From the foundational static plots of Matplotlib and the statistical enhancements of Seaborn to the interactive power of Plotly, Altair, and Bokeh, and the specialized capabilities of NetworkX and the geospatial tools of Geopandas and Folium, you have a vast array of options to transform your data into compelling visual stories.
By mastering these libraries and techniques, you can effectively explore your data, communicate insights, and build sophisticated data applications and dashboards. Keep experimenting with different plot types, customizations, and interactive features to unlock the full potential of data visualization in Python! Sources